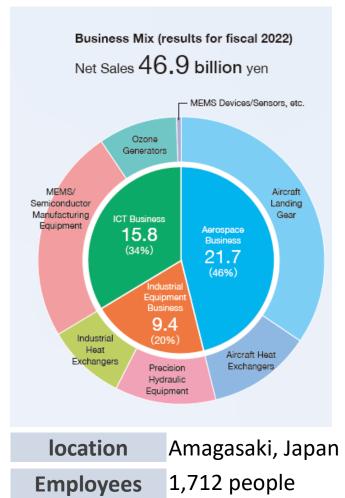
Device Commercialization Support Service by MEMS-Infinity

MEMS Infinity
Sumitomo Precision Products Co., Ltd.

Outline

- Company profile of Sumitomo Precision Products
- MEMS business in Sumitomo Precision Group
- MEMS Infinity's device commercialization support service
- MEMS Infinity's technological strength
- Summary

Company profile of Sumitomo Precision Products



Company Profile

Three businesses: Aerospace, Industrial Equipment, and ICT

Industrial Equipment Business

Hydraulic equipment

ICT Business

MEMS device/ Foundry

MEMS Business – History

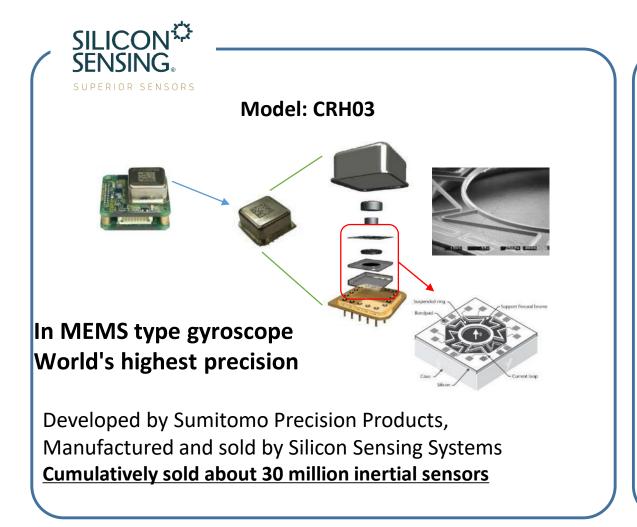
M E M S

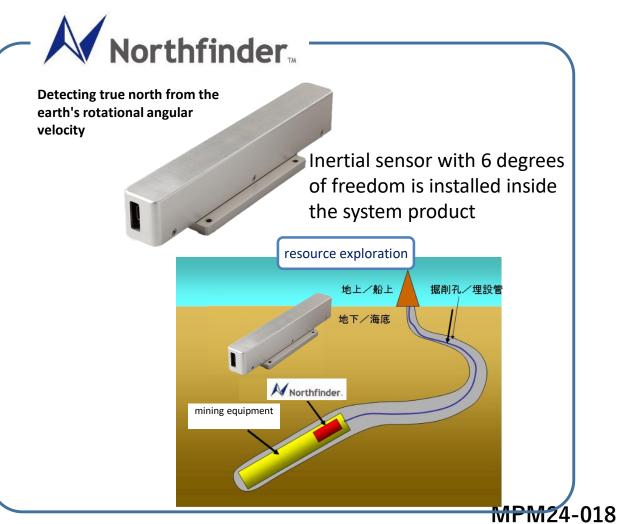
MEMS business with over 30 years of history

2023	Establishment of new organization MEMS∞(infinity)	MEMS 🤝	MEMS∞	
2009	Launch of inertial system attitude angle detector (AMU)	Northfinder	Inertial Systems Division	
1999	Joint venture with BAE Systems in UK was founded for manufacturing and sales of MEMS gyroscope	SILICON [©] SENSING.	Foundry SILICON SENSING	
1998	MEMS accelerators were on manufactured and on sale	SUMITOMO PRECISION PRODUCTS CO., LTD.	Device Development Sumitomo Precision Products	
1995	Silicon deep RIE equipment (Si-DRIE) on sale	© SPP Technologies Co., Ltd.	Equipment Development SPP Technologies Co., Ltd.	
1992	MEMS Manufacturing equipment, IX200 on sale. Hands-on lab was founded. Fundamental study on MEMS device started.			

Experience in developing all types of MEMS devices

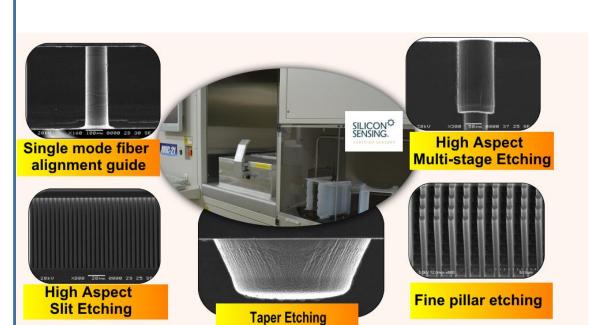
	Electromagnetic	Electrostatic	Piezoelectric	others
Example of sensor design	Gyroscope	Gyroscope	Gyroscope	Infrared sensor
Example of actuator design	Scan mirror	Mirror switch	VOA	Wavelength filter





MEMS devices and system products

Developing products that apply high-sensitivity inertial sensors


MEMS foundry

Our foundry services are strong in PZT thin film deposition and Si deep etching processing, and we will utilize our own MEMS gyroscope sensors production experience to mass produce MEMS devices that meet customer needs.

SUPERIOR SENSORS

Amagasaki factory (6"/8" fab)

Operated under "Japanese quality" standard

MPM24-018

MEMS/semiconductor manufacturing equipment

SPT not only has well-known Si DRIE, but also has a variety of film deposition and etching equipment.

All designed & Manufactured in Japan

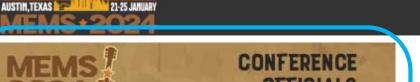
SiC, compound/oxide film etching equipment Sirius/Spica

Silicon DRIE equipment **Predeus/Proxion**

Silicon oxide sacrificial layer etching equipment Vetelgeuse

PECVD equipment for oxide film/nitride film Cetus


MPM24-018



Our reputation in MEMS industry ~case 1~ (IEEE MEMS 2024)

OFFICIALS

Sponsor

Sponsors » Current Support

PROGRAM COMMITTEE (continued)

Ruochen Lu University of Texas, Austin, USA Jianmin Miao Shanghai Jiaotong University, CHINA Sumitomo Precision Products Co., Ltd. IAPAN Hiroshi Miyajima

Massachusetts Institute of Technology IISA

Farnaz Mironi

Hiroshi Miyajima Sumitomo Precision Products Co., Ltd. **JAPAN**

Gold Benefactor

Diamond Ben factor

ROBERT BOSCH AWARD RECIPIENT

established by the IFFF Electron Devices Society in 2014 forecognize and honor advances in the invention, design, and/orfabrication of micro- or nano- electromechanical systems and/ordevices.

> The 2024 Bosch Award will be presented on Monday, 22 January at 08:30.

SUSUMU KAMINAGA

For Development and Commercialization of Deep Reactive Ion Etching Technology

before joining Sumitomo Precision Products (SPP), Japan in 1969. Through his career with technological background in the industry, he made a lot of achievements for MFMS, especially, R&D and commercialization of deep reactive ion etching (DRIE) technology based on Robert Bosch invented Bosch Process. Initially, he ran Surface Technology Systems (STS) in U.K. to take initiative of the R&D and commercialization of DRIE technology under collaboration with Robert Bosch. The world first DRIE tool was introduced into the market in 1995. The technology has enabled many new MEMS devices to emerge and contribute to rapid growth of MEMS application for automotive, inkjet printers, displays, smartphones, healthcare and IoT. It has been said in the MEMS society that those applications could not be made available without the development and commercialization of DRIE technology. He founded SPTS Technologies and SPP Technologies (SPT) as SPP's affiliated companies to focus on further development and commercialization of MEMS technologies. He is keeping involved even

now in supporting further development and commercialization of DRIE technology. He has given hundreds of speeches at academia, industry and international conferences including many IEEE organized ones. His talks inspired researchers, engineers and managers to develop MEMS technology for the purpose of new business creation in the world of IoT and smart societies. He was a member of External Advisory Board of the Mechanical Engineering Department at the University of California, Berkeley from 2007 to

Our reputation in MEMS industry ~case 2~ (PiezoMEMS-2024)

We have sponsored in PiezoMEMS 2024 (Mar19-20, 2024, Aachen, Germany).

The latest updates in SPP PZT thin film development

SILVER SPONSORS

Piemacs

11:45 - 12:10

Sumitomo

Precision

Quanscient

QUANSCIENT

Sumitomo Precision Products

Our reputation in MEMS industry ~case 3~ (Hiton Head Workshop)

Delivers all the benefits of piezoelectric MEMS in a superior thin-film material: performance, thickness, environmental robustness

Optimizes sensing and actuation for performance-intensive MEMS devices

Provides application-specific advantages for ultrasound transceivers, micro-speakers, micromirrors, microfluidics and more

Unlocks commercial potential of emerging piezoelectric MEMS devices

We provide an integrated product development experience

We work together to guide your design seamlessly from concept development and prototype through test and valume fabrication.

We are AMFitzgerald and Sumitomo Precision Products Co., Ltd.

Learn more:

About

Hilton Head Workshop 2024:

Program

Sponsors

MEMS

A Solid-State Sensors, Actuators and Microsystems Workshop

2-6 June 2024

Sonesta Resort

130 Shipyard Drive Hilton Head Island, SC 29928 Phone: 1-843-842-2400 Fax 1-843-842-6503

General Chair

Jenna F. Chan, DEVCOM Army Research Laboratory

Program Chair

Swaminathan Rajaraman, University of Central Florida

Important Info:

2024 Award Winners

Hilton Head 2024 Flyer

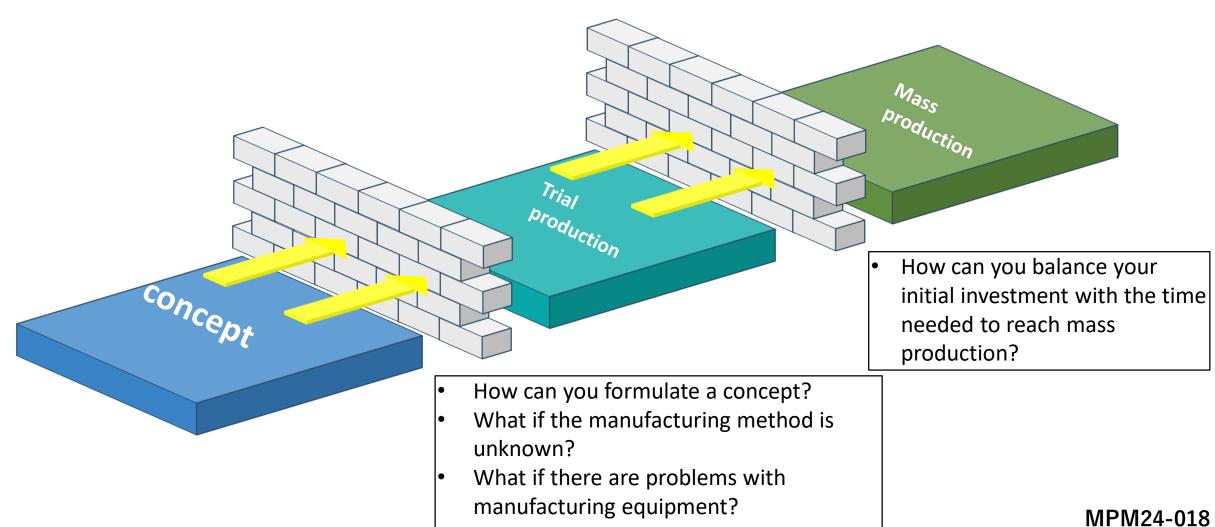
Invited Speakers: 40 Years of MEMS Success

Sponsored by:

TRANSDUCER RESEARCH FOUNDATION

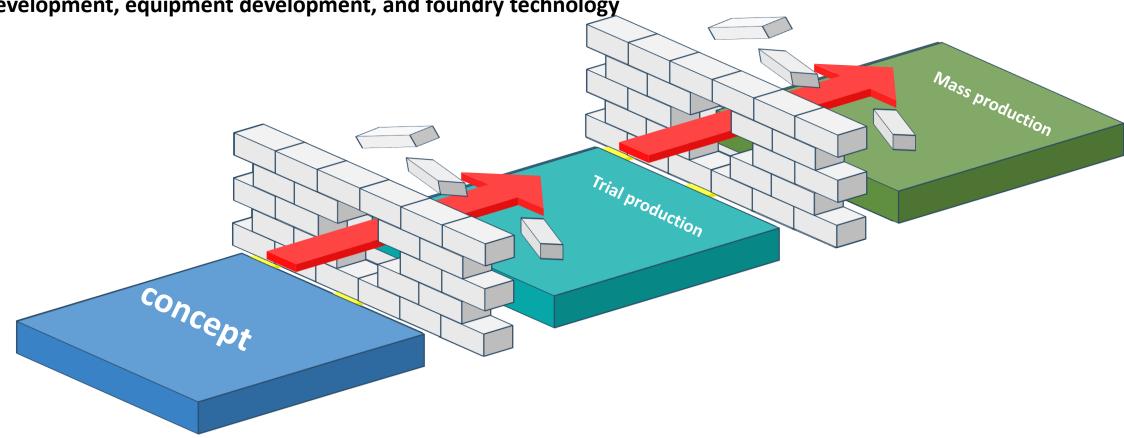
FORTY YEARS OF MEMS INNOVATION AT HILTON HEAD WORKSHOP: FROM EMERGING TECHNOLOGIES TO COMMERCIAL PRODUCTS Alissa M. Fitzgerald, Ph.D. AMFitzgerald, USA

MPM24-018



MEMS Infinity's device commercialization support service

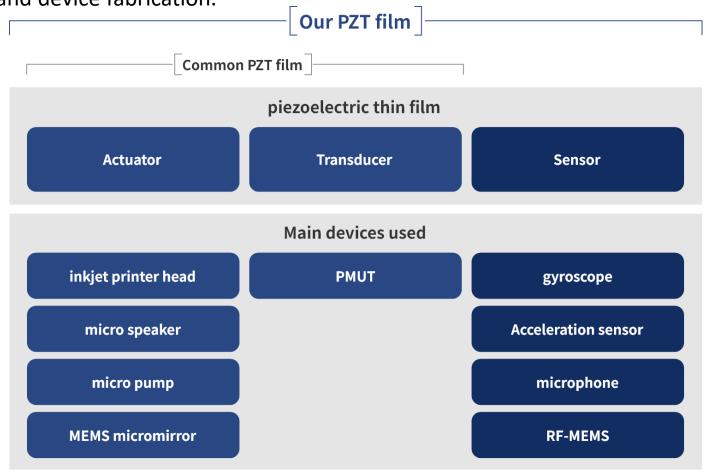
Overcoming the major barriers of each stage of commercialization


SUMITOMO PRECISION PRODUCTS CO., LTD.

1/

MEMS Infinity is ready to help

We have the expertise to break through the barriers of device development, equipment development, and foundry technology

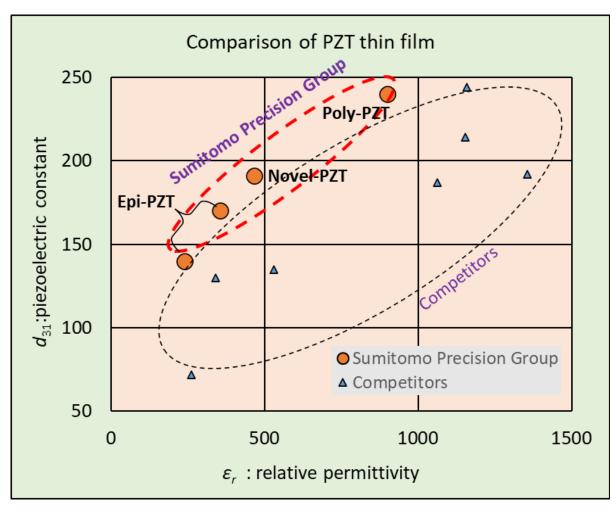


MEMS Infinity's technological strength

PZT thin film technology

Together with our affiliated companies, we have decades perfecting PZT thin films in MEMS manufacturing sputtering deposition and device fabrication.

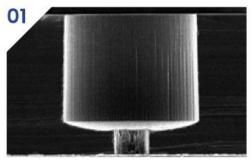
MPM24-018

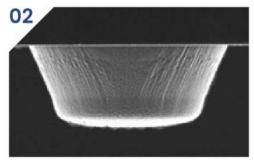


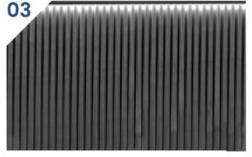
Comprehensive PZT thin film line-up

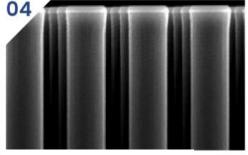
- ullet Our PZT thin film offerings having higher d_{31} and lower e_r
- Our Poly-PZT has high FOM (Act-FOM) for actuators
- Our Epi-PZT has high FOM (Tr-FOM) for transducers (i.e., emitting and receiving device)
- Our Novel-PZT has intermediate feature between Poly-PZT and Epi-PZT.

Туре	Novel-PZT	Epi-PZT		Poly-PZT		
PZT composition	MPB	Ti-rich	MPB	MPB		
$\mathcal{E}_{_{\!$	465	239	354	900		
Act-FOM (=- d_{31})	191 pm/V	140 pm/V	170 pm/V	240 pm/V		
$(=-e_{31, f})$	14.3 C/m ²	10.4C/m ²	12.7C/m ²	17.9 C/m ²		
Tr-FOM ($\propto (d_{31}^2)/\varepsilon_r$)	50 GPa	52 GPa	52 GPa	40 GPa		
tanδ	<0.03	<0.03		<0.03		
Stress (tensile)	89 MPa	200 MPa		30 MPa		
Wafer type	Bulk Si or SOI	Bulk Si or SOI		Bulk Si or SOI		
Wafer size	6" or 8"	6" or 8"		6" or 8"		
PZT thickness	2 μm	2 μm		2 μm		1~5 μm


Our technological strength: Silicon deep etching


We've achieved the world's highest level of high selectivity and high etch rate while optimizing verticality, side wall roughness, and CD loss.

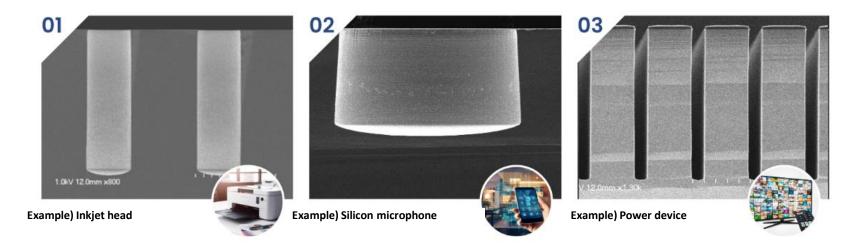

Processing example


High aspect ratio Multi-steps

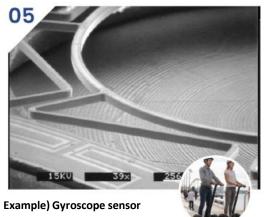
Tapered shape

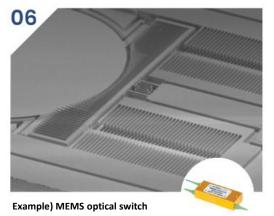
High aspect ratio slits

Micro pillars


IPM24-018

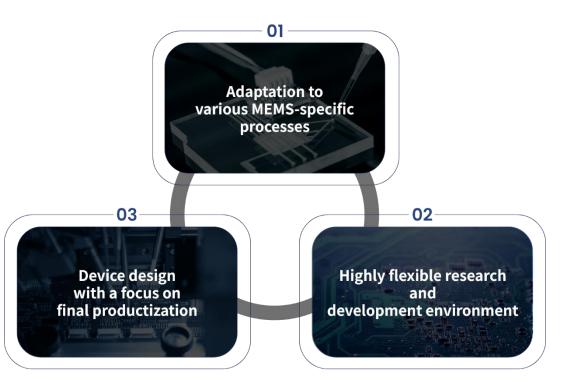



Our technological strength: Silicon deep etching



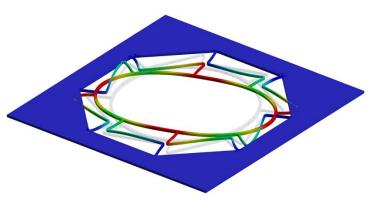
Example devices realized through Silicon deep etching process

MEMS Infinity vs. the competitors


	(
ΜF	М	5

Comparison table for service areas between our company and other companies	MEMS design		Wafer process		Volume
	Structure	Process	6 inches or less	Over 6 inches	production
Design development service provider	•	•	•		
Foundry [From concept verification to small volume production]		•	•	•	
Foundry [focused on Volume production]				•	•
MEMS 🗘	•	•	•	•	•

We have MEMS device design covered


MEMS

- We provide development support from the design stage of MEMS devices to bring product ideas to life.
- We offer support from device design to simulation.
- Through collaboration with our in-house fab and university institutions, we provide valuable services.

Structural design/simulation

We will listen to your requirements and conduct concurrent design and development from the initial structural design. By performing model analysis using FEM (Finite Element Method), we can analyze the behavior of different materials under load, vibration, and heat, and derive the optimal structure.

Process design/prototype production

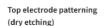
After simulation, the device and process design will be carried out. The formation of piezoelectric elements, as well as processes such as film deposition, dry etching, and wet etching, will be repeated to prototype the MEMS device.

Foundry Service (MEMS device development)

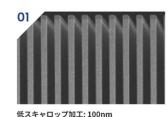
Prototype process

Bottom electrode deposition (Ti/Pt)

PZT film deposition (standard 3µm) (1-5µm)

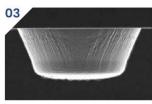

Top electrode deposition (Ti/Au or Ti/Pt)

Si or SOI patterning (Deep RIE)

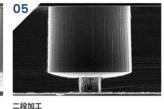

PZT/bottom electrode/

Si oxide patterning

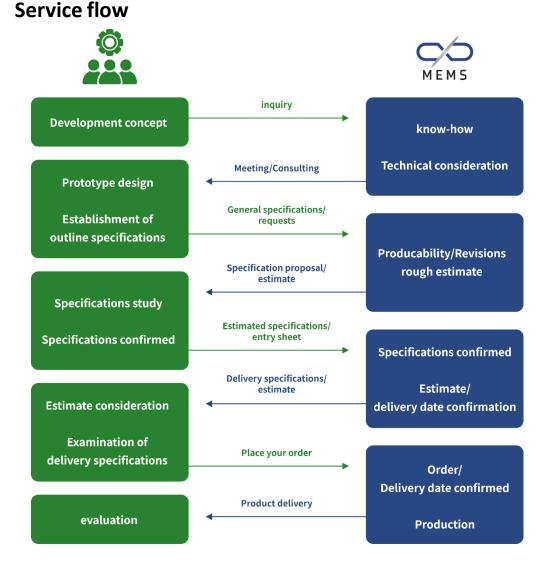
(dry etching)



Si deep etching process

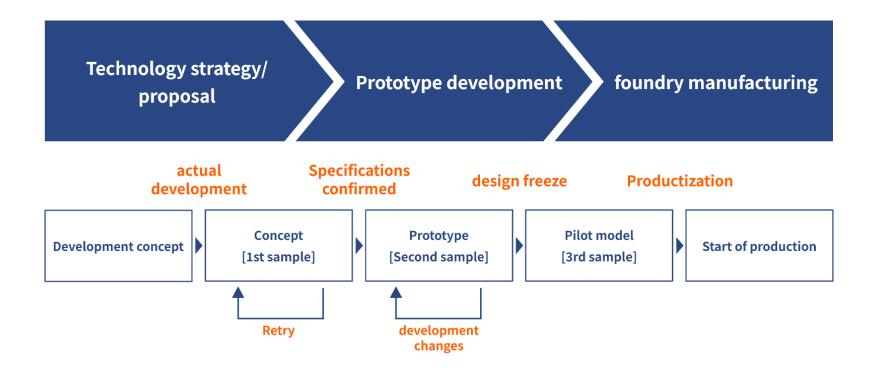


高アスペクト

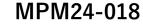

テーパー加工

マイクロピラー加工

貫通ストレートホール加工



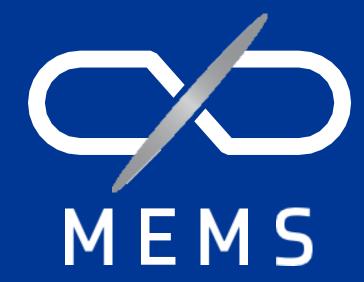
Foundry Service (Volume production)



Unlike traditional semiconductor devices, MEMS have mechanical elements within microstructures, so it is important to measure the behavior of dynamic mechanical systems through reliability and durability tests. By creating APQP and summarizing the procedures and processes from product planning and development to mass production from a quality assurance perspective, we gain a high level of trust from our customers and ensure a high degree of mutual understanding in all processes.

Quality assurance system

Summary


Reasons to choose MEMS Infinity

- ➤ We will propose the optimal solution for customers who are considering MEMS device design, development, prototyping, and mass production
- ➤ Based on our proven high-volume production technology of PZT film deposition for gyroscopes, we offer seamless services from film deposition to device processing--all tailored to your needs
- ➤ You get access to Predeus, a product from SPP Technologies that is already proven for mass production of MEMS devices
- ➤ We provide high-quality processing with world-class high selectivity and high etching rates while maintaining verticality, minimal sidewall roughness, and minimal CD loss.

mems-infinity@spp.co.jp

https://www.spp.co.jp/infinity/en/

https://www.linkedin.com/showcase/mems-infinity/